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Isolation of earth abundant biopolymer, Lignin, from Dendrocalamus sinicus and their structural properties were
investigated to achieve its large-scale practical applications in value-added products. Two lignin fractions (MWL,
DSL)were isolatedwith successive treatments of dioxane and dimethylsulfoxide (DMSO) fromdewaxed and ball
milled bamboo (D. sinicus) sample. The two-step treatments yielded52.1% lignin based on the total lignin content
in the dewaxed bamboo sample. Spectroscopy analyses indicated that the isolated bamboo lignin was a typical
grass lignin, consisting of p-hydroxyphenyl, guaiacyl, and syringyl units. The major interunit linkages presented
in the obtained bamboo lignin were β-O-4′ aryl ether linkages, togetherwith lower amounts of β-β', β-5′, and β-
1′ linkages. The tricin was detected to be linked to lignin polymer through the β-O-4′ linkage in the bamboo. In
addition, phenyl glycoside and benzyl ether lignin-carbohydrate complexes (LCC) linkageswere clearly detected
in bamboo (D. sinicus), whereas the γ-ester LCC linkages were ambiguous due to the overlapping NMR signals
with other substructures. The detailed structural properties of the obtained lignin fraction together with the
light-weight will benefit efficient utilization of natural polymers as a possibly large-scale bio-based precursor
for making polymeric materials, biochemicals, functional carbon and biofuels, and multifunctional polymer
nanocomposites.

© 2018 Published by Elsevier B.V.
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1. Introduction

Polymer based materials have attracted great attention both in in-
dustry and academia because of their remarkable properties and low
cost. However, the serious environmental problems due to the non-
biodegradable polymers from petroleum industry have demanded the
exploration of biopolymers. Among various bio-polymers, lignin is sec-
ond abundant bio-polymer in the earth [1,2], that can potentially con-
tribute to a wide range of value added products such as membranes,
foams, carbonmaterials, engineered plastics, bio-based composites, liq-
uid fuels and commodity chemicals [3]. Although researchers have
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reported lignin for more than a century, due to its complex structure,
its effective usage is limited to only 2% [4,5]. Therefore, it is necessary
to make progress in analytical chemistry, detailing the structure of lig-
nin to achieve its large-scale applications. In this work, we investigated
the structural properties of lignin derived from Dendrocalamus sinicus.

Bamboo, Dendrocalamus sinicus, the world's largest bamboo species,
belonging to Bambusoideae of Gramineae, with strong woody stems
(maximal diameter 30 cm, maximal height 33m), is mainly distributed
in the southwest region of China [6]. Traditionally, as rawmaterials, this
kind of bamboo species is widely used in construction, paper making,
and man-made board industries. Due to its easy propagation, fast
growth, and high productivity, D. sinicus is considered as one of the
most potential renewable non-woody forestry feedstock for lignocellu-
losic biorefinery. Given the growing interest in bamboo as feedstock for
bio-chemicals and biomaterials, it is important to understand the com-
position and structure of components in the cell wall of the bamboo
stem in order to effectively utilize it as a precursor to biomaterials or
green chemicals.
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Table 2
Weight-average (Mw) number-average (Mn) molecular weights and polydispersity (Mw/
Mn) of the lignin fractions isolated from D. sinicus.

Lignin fractions

MWL DSL

Mw 4650 3760
Mn 2840 2090
Mw/Mn 1.6 1.8
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Compared with the other natural components (cellulose and hemi-
celluloses), lignin is an extremely complex three-dimensional polymer
(typically found in vascular plants) formed by dehydrogenative poly-
merization of p-hydroxycinnamyl, coniferyl, and sinapyl alcohols.
These three lignin precursors (‘monolignols’) give rise to the so-called
p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) phenylpropanoid
units, which show different abundances in lignin from different groups
of vascular plants, as well as in different plant tissues and cell-wall
layers [3]. Unlike most natural polymers, which consist of a single
intermonomeric linkage, lignin is an amorphous, three-dimensional co-
polymer of phenylpropanoid units linked through ether and
carbon carbon bonds such as β-O-4′, 4-O-5′, β-β', β-1′, β-5, and 5–5′ [7].

Besides these 20different types of bonds presentwithin the lignin it-
self, lignin is covalently linked to hemicellulosic polysaccharides, hin-
dering the effective separation of the wood components and the
efficiency of enzymatic hydrolysis of carbohydrates [8,9]. It was gener-
ally accepted that benzyl-ether and phenyl-glycoside linkages are the
main bonds of lignin-carbohydrate complexes (LCC) in hardwood and
softwood. On the other hand, ferulate and p-coumarate link both hemi-
celluloses (mainly arabinoxylan) and lignin together by benzyl-ester
forming LCC in the herbaceous [10]. The term “lignin-carbohydrates
complex” was first used by Björkman to describe the preparation of
hemicelluloses accompanied by lignin, and many isolation procedures
have been proposed to prepare LCC [11]. Among the reported methods,
solvent extraction from various untreated plant cell walls under mild
conditions is the most common and effective method, because any
chemical or biochemical treatment before LCC isolation would break
the possible linkages between lignin and carbohydrates [12]. However,
it has been extremely difficult to obtain unambiguous evidence on the
nature and frequency of such linkages in the real plants [13]. Therefore,
it is vitally important to understand the structure of native lignin and
LCC in the lignocellulosic biomass.

Understanding the specific structural characteristics of lignin is con-
ducive to develop an efficient and economical conversion technology
for lignocellulosic resource biorefinery. The aim of the present study
was to investigate the structural characteristics and physicochemical
properties of lignin and LCC subfractions present in D. sinicus. In this
study, the bamboo materials were sequentially treated with dioxane
andDMSO. The obtained lignin preparationswere characterized by Fou-
rier transform infrared spectroscopy (FT-IR), gel permeation chroma-
tography (GPC), high-performance anion exchange chromatography
(HPAEC), and 2D heteronuclear single quantum coherence magnetic
resonance (2D HSQC NMR) spectroscopy.

2. Experimental work

2.1. Materials

Bamboo (D. sinicus) sample (Fig. S1), 3 years old, was collected from
Yunnan Province, China. It was first dried in oven at 60 °C and then
chipped into small pieces. The oven-dried bamboo samples were
ground and screened to obtain a 40–60 mesh powder. This bamboo
fraction was subjected to extraction with toluene/ethanol (2:1, v/v) in
a Soxhlet apparatus for 6 h to remove max. The extractive-free bamboo
sample contained 44.50% cellulose, 28.6% lignin (25.0% Klason lignin,
3.6% acid-soluble lignin), and 17.6% hemicelluloses, determined
Table 1
Yields and carbohydrate contents of lignin fractions isolated from the dewaxed D. sinicus.

Lignin Yield (%) Purity
(%)

Polysaccharides
(%)

Monosaccharide (%)

Rha Ara Gal Glu Xyl Glca

MWL 6.1 81.5 16.2 ND 3.2 ND 10.9 84.7 1.2
DSL 8.8 87.6 9.7 ND 2.1 ND 8.4 89.5 ND

Abbreviations: Rha, rhamnose; Ara, arabinose; Gal, galactose; Glu, glucose; Xyl, xylose;
Glca, glucuronic acid; N.D, not detectable.
according to National Renewable Energy Laboratory's standard analyti-
cal method [14]. The dewaxed 40–60mesh bamboo powder wasmilled
in a planetary ball mill (Fritsch, Germany) equippedwith a 500mL ZrO2

bowl containing mixed balls (10 balls of 2 cm diameter and 25 balls of
1 cm diameter). The milling was conducted for 5 h (a 10 min lull after
every 10 min of milling) under a nitrogen atmosphere at 450 rpm. All
standard chemicals, such as monosaccharide and chromatographic re-
agents, were analytical or reagent grade without further purification.
2.2. Isolation of lignin fractions

A scheme for separation of bamboo (D. sinicus) lignin was shown in
Fig. S2. The procedures are illustrated as follow: The dewaxed and ball
milled bamboo sample was firstly suspended in 96% dioxane with a
solid-to-liquid ratio of 1:20 (g/mL) at room temperature for 48 h to iso-
latemill wood lignin (MWL) according to themethod of Björkman [15].
The extraction procedure was conducted in the dark and under a nitro-
gen atmosphere. After extraction, the mixture was filtered and the res-
iduewaswashedwith the same solvents until the filtrate was clear. The
purification procedure was according to the method of Sun [16]. The
combined filtrates were first concentrated with a rotary evaporator
under reduced pressure and then precipitated in 3 volumes of 95% eth-
anol to precipitate hemicelluloses. A pellet rich in hemicelluloses was
recovered by filtering, washing with 70% ethanol, and freeze-drying.
After evaporation of ethanol, the 96% dioxane soluble lignin (MWL)
was obtained by precipitation in acidic condition, which was adjusted
to pH 1.5–2.0 by 6 M HCl. The residue free of 96% dioxane-soluble was
successively treated with 95% DMSO at 85 °C for 5 h with a solid-to-liq-
uid ratio was 1:20 (g/mL). The DMSO-soluble lignin fraction (DSL) was
obtained according to the samemethod as precipitation of MWL before
freeze-drying. All the experiments were performed at least in duplicate.
The relative standard deviation was observed to be lower than 4.8%.
Yields of the lignin fractionswere calculated on dry weight basis related
to the dewaxed bamboo samples.
2.3. Characterization of lignin fractions

The hemicellulosic moieties associated with the lignin fractions
were determined by hydrolysis with dilute sulfuric acid according to
the method suggested by Sun [17]. That is, 4–6 mg sample of lignin
was hydrolyzed with 1.475 mL of 6.1% H2SO4 for 2.5 h at 105 °C. After
hydrolysis, the mixture was filtered, and the filtrate containing the lib-
erated neutral sugars was analyzed by high-performance anion ex-
change chromatography (HPAEC) system (Dionex ICS 3000, U.S.) with
pulsed amperometric detector and an ion exchange Carbopac PA-1 col-
umn (4 × 250 mm). Neutral sugars were separated in 18 mM NaOH
(carbonate free and purged with nitrogen) with postcolumn addition
of 0.3MNaOH at a rate of 0.5mLmin−1. Run timewas 45min, followed
by 10 min elution with 0.2 M NaOH to wash the column and then a
15 min elution with 18 mMNaOH to reequilibrate the column. Calibra-
tionwas performedwith standard solutions of L-rhamnose, L-arabinose,
D-glucose, D-galactose, D-mannose, D-xylose, glucuronic acid, and
galacturonic acid. The analyses were run twice, and the average values
were calculated for all of the lignin fractions.



Fig. 1. FT-IR spectra of lignin fractions isolated from D. sinicus.
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The weight-average (Mw) and number-average (Mn) molecular
weights of the lignin fractions were determined by GPC (Agilent 1200,
USA) with a refraction index detector on a PL-gel 10 μm Mixed-B
7.5 mm ID column, calibrated with PL polystyrene standards. 4 mg lig-
nin sample was dissolved in 2 mL tetrahydrofuran, and 20 μL sample
in solution was injected. The column was operated at ambient temper-
ature and eluted with tetrahydrofuran at a flow rate of 1.0 mL min−1.

FT-IR spectra of lignin fractions were conducted using a Thermo Sci-
entific Nicolet iN10 FT-IR Microscope (Thermo Nicolet Corporation,
Madison, WI, USA) equipped with a liquid nitrogen cooled MCT detec-
tor. The dried samples were ground and palletized using BaF2, and
their spectra were recorded in the range from 4000 to 700 cm−1 at
4 cm−1 resolution and 128 scans per sample. The fingerprint region
was baseline corrected between 1900 and 750 cm−1. Before data collec-
tion, a background scanning was performed for background correction.

NMR spectra were recorded with a Bruker AVIII 400MHz spectrom-
eter according to our former published reports [18]. The 2D HSQC spec-
tra were acquired in the HSQC GE experiment mode. The spectral
widthswere 1800 Hz and 10,000 Hz for the 1H- and 13C-dimensions, re-
spectively. A 128 scanning time, a 2.6 s delay time between transients,
and a 1.5 s relaxation time were used. The 1JC-H used was 145 Hz. The
central solvent (DMSO) peakwas used as an internal chemical shift ref-
erence point (δC 39.5; δH 2.49 ppm). Prior to Fourier transformation, the
data matrixes were zero filled up to 1024 points in the 13C-dimension.
Data processing was performed using standard Bruker Topspin NMR
software.
3. Results and discussion

3.1. Yield and carbohydrate composition

In the plant cell walls, lignin is associated with cellulose and hemi-
celluloses by hydrogen bonds and covalent bonds (mainly ether and
ester linkages), respectively. Therefore, isolation of lignin in a pure
form fromplant cellwalls involves hydrolysis of ester and ether linkages
followed by extraction them into aqueous media [19]. As shown in
Table 1, the successive treatments of the dewaxed bamboo sample
with dioxane and DMSO resulted in a dissolution of 6.1 and 8.8% of
the bamboo lignin fractions (percent of the dry starting material),
respectively.
To precisely evaluate the efficiency of the two-step sequential treat-
ments on bamboo lignin solubilization, the lignin content in the isolated
lignin fractions was determined by the standard methods [14]. As
shown in the Table 1, the lignin content (including acid soluble lignin
and acid insoluble lignin) for MWL and DSL was 81.5% and 87.6%, re-
spectively. Based on the purity analysis results, it could be speculated
that 44.3% original lignin (percent of original lignin in bamboo)was ob-
tained after the two-step treatments in the present study.

The composition of the associated hemicelluloses in the isolated lig-
nin fractions were determined by their contents of neutral sugars and
uronic acids, and the analytical results are also listed in Table 1. Clearly,
both MWL and DSL contained considerable amounts of bound polysac-
charides as shown by the neutral sugar and uronic acid contents. This
result revealed that the sequential treatments with dioxane and
DMSO under the conditions used did not significantly cleave the LCC
bonds between lignin and polysaccharides in the cell wall of bamboo.
The MWL and DSL fractions contained a large percentage of xylose
among the total sugars and uronic acids. In other words, xylose was
the predominant sugar composition among the five kinds of sugars
and uronic acids. These results suggested that xylans in the plant wall
were the predominant hemicelluloses which crossly linked with lignin.
Other sugars, such as glucose and arabinose, were also observed in no-
ticeable amounts.

3.2. Molecular weight

In order to investigate the molecular weights of the lignin fractions
sequentially extracted with dioxane and DMSO solutions, weight-
average (Mw) and number-average (Mn) molecular weights, as well as
the polydispersity (Mw/Mn) of the of MWL and DSL were determined
by GPC and the results are given in Table 2. As can be seen, MWL and
DSL exhibited unlike weight-average molecular weights, 4650 and
3760 g mol−1, respectively. The weight-average molecular weight of
MWL was slightly higher than that of DSL. It has been documented
that the carbohydrate chains linked to lignin can increase the hydrody-
namic volume of lignin, thus increasing the apparent molar mass of lig-
nin in GPCmeasurements [20]. Therefore, the relative higher molecular
weights of MWLmay result from its higher carbohydrate contents than
that of DSL as shown in Table 1. In addition, both MWL and DSL exhib-
ited relatively narrowmolecular weight distributions, as shown byMw/
Mn b 1.80. Polydispersity is an important parameter of natural



Fig. 2. HSQC-NMR spectra of lignin fractions (MWL and DSL) isolated from D. sinicus.
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macromolecules relative to their applications in process of biorefinery.
In general, a narrower polydispersity means a better physicochemical
stability. From this point of view, it is important to obtain lignin poly-
mers with a relatively narrow polydispersity from plants resources.

3.3. FT-IR analysis

Fig. 1 shows the FT-IR spectra ofMWL andDSL isolated frombamboo
(D. sinicus). The FT-IR spectra have been recorded and the peaks were
assigned by comparing their wavenumbers with previous literatures
[21–23]. An analogous structure of the lignin fractions can be seen
from Fig. 3, because the spectra ofMWL andDSL showedminor changes
in the peaks and the absorption intensities. Obviously, a wide absorp-
tion band focused at 3423 cm−1 is attributed to OH stretch, and bands
at 2924 and 2939 cm−1 are assigned to CH stretch in CH2 and CH3

groups, respectively. The presence of the unconjugated carbonyl stretch
at 1708 cm−1 in MWL and DSL indicate that the ester groups between
lignin and hemicelluloseswere remained during the treatments of diox-
ane and DMSO, which corresponded to the results of lignin purity anal-
ysis in Table 1. The band at 1655 cm−1 is attributed to conjugated
carbonyl stretching in lignin. The aromatic skeleton vibration in the lig-
nin fractions occurs at 1590, 1501, and 1420 cm−1. Absorption of
1456 cm−1 indicates the methoxyl C\\H deformation and aromatic
ring vibration. The weak band at 1362 cm−1 arises from the aliphatic
C\\H stretch in CH3. The 1325 and 1224 cm−1 bands are assigned to
syringyl and guaiacyl ring breathing, respectively. The bands at
1119 cm−1, 832 cm−1, and shoulder at 1158 cm−1 in lignin indicate a
typical structure of lignin with p-hydroxy phenylpropane (H), guaiacyl
(G), and syringyl (S) units. Similar results were also found in the
NaOH extracted bamboo lignin from Bambusa rigida species and
Pyllostachys makinoi Hay [24,25].
3.4. 2D-HSQC NMR analysis

Two-dimensional 1H-13C NMR (2D NMR) spectroscopy can provide
important compositional and structural information of the lignin and
LCC [26]. In addition, the application of 2D HSQC NMR can also provide
a direct evidence of the structural characteristics and the linkages of
LCCs [8]. The 2D-HSQCNMR spectra of the lignin and LCC in the isolated
bamboo lignin fractions are shown in Figs. 2 and 5, respectively. The
main substructures of bamboo lignin and LCC linkages are depicted in
Figs. 3 and 4, respectively. The HSQC crossing signals of lignin and LCC
are assigned by the published literature [9,27–30]. The assignments of



Fig. 3. Substructures presented in the lignin fractions isolated from D. sinicus: (A) β-O-4′ linkages; (A′) γ-acetylated β-O-4′ substructures; (A′′) γ-p-coumaroylated β-O-4′ linkages;
(B) resinol structures formed by β-β'/α-O-γ'/γ-O-α' linkages; (C) phenylcoumarane structures formed by β-5′/α-O-4′ linkages; (D) spirodienone structures formed by β-1′/α-O-
α'linkages; (pCA) p-coumarate ester structures; (T) a likely incorporation of tricin into the lignin polymer through a G-type β-O-4′ linkage; (I) p-hydroxycinnamyl alcohol end groups;
(G) guaiacyl unit; (G′) oxidized guaiacyl units with a Cα ketone; (S) syringyl unit; (S′) oxidized syringyl unit linked a carbonyl group at Cα (phenolic); (H) p-hydroxy phenylpropane unit.
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Fig. 4. Lignin-carbohydrate linkages: phenyl glycoside (A), γ-ester (B), and benzyl ether (C).
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the main lignin and associated carbohydrate cross signals in the HSQC
spectra are listed in Table 3.

3.4.1. Lignin structures
The side-chain region of the spectra gave important information

about the different interunit linkages present in the bamboo lignin. As
shown in Fig. 2, both the HSQC spectra of MWL and DSL showed prom-
inent signals corresponding to β-O-4′ substructures (A). The C-H corre-
lations in β-O-4′ substructures were observed for α-C positions at δC/δH
71.8/4.86 (structures A and A´), and for β-C positions of S-type lignin
corresponding to erythro and threo forms at δC/δH 85.9/4.12 and 86.3/
4.29, respectively. However, the correlations shifted to δC/δH 83.5/4.29
Table 3
Assignments of 13C-1H correlation signals in the HSQC spectra of lignin fractions (MWL
and DSL) isolated from D. sinicus.

Lables δC/δH Assignments

Cβ 53.3/3.46 Cβ–Hβ in phenylcoumaran substructures (C)
Bβ 53.5/3.06 Cβ–Hβ in β-β' (resinol) substructures (B)
MeO 55.6/3.70 C–H in methoxyls
Aγ 59.5/3.63 Cγ–Hγ in β-O-4′ substructures (A)
Cγ 62.5/3.73 Cγ–Hγ in phenylcoumaran substructures (C)
A'γ 63.2/4.33–4.49 Cγ-Hγ in β-O-4′ substructures (A′)
Bγ 71.4/3.82, 4.18 Cγ–Hγ in β-β' resinol substructures (B)
Aα 71.8/4.86 Cα–Hα in β-O-4′ substructures linked to a S unit (A, A′)
Dβ′ 79.2/4.12 Cβ′–Hβ′ in spirodienone substructures (D)
Aβ(G/H) 83.5/4.29 Cβ–Hβ in β-O-4′ substructures linked to a G and H unit

(A, A′)
Bα 84.8/4.65 Cα–Hα in β-β' (resinol) substructures (B)
Aβ(S) 85.9/4.12,

86.3/4.29
Cβ–Hβ in β-O-4′ substructures linked to a S unit (A)

Cα 86.8/5.46 Cα–Hα in phenylcoumaran substructures (C)
T8 93.6/6.60 C8–H8 in tricin substructures (T)
T6 98.2/6.22 C2, 6–H2, 6 in tricin substructures (T)
T′2, 6 103.2/7.34 C′2, 6–H′2, 6 in tricin substructures (T)
S2, 6 104.3/6.73 C2, 6–H2, 6 in etherified syringyl units (S)
S′2, 6 106.2/7.23 C2, 6–H2, 6 in oxidized (Cα =O) phenolic syringyl units

(S′)
G2 110.7/6.98 C2–H2 in guaiacyl units (G)
G5 114.8/6.77 C5–H5 in guaiacyl units (G)
pCAβ 113.9/6.30 Cβ–Hβ, p-coumaroylated substructures (pCA)
pCA3, 5 115.7/6.94 C3, 5–H3, 5, p-coumaroylated substructures (pCA)
G6 119.4/6.75 C6–H6, G units (G)
H2, 6 127.9/7.19 C2, 6–H2, 6 in H units (H)
pCA2, 6 130.1/7.49 C2, 6–H2, 6, p-coumaroylated substructures (pCA)
pCAα 144.3/7.51 Cα–Hα, p-coumaroylated substructures (pCA)

Abbreviations: G, guaiacyl unit; S, syringyl unit; S′, oxidized syringyl unit linked a carbonyl
group at Cα (phenolic); H, p-hydroxylphenyl unit; pCA, esterified p-coumaric acid.
in structures A linked to G/H lignin units and γ-acylated β-O-4′ aryl
ether substructures (A´) linked to S lignin units. The C-H correlations
for γ-C positions in β-O-4′ substructures were observed at δC/δH 59.5/
3.63 and 63.2/4.33–4.49 for structure A and A´, respectively. The pres-
ence of signals of A′ indicated that the lignin of bambooD. sinicus is par-
tially acetylated at γ-C positions in side chain of β-O-4′ substructures. In
addition to β-O-4′ aryl ether structures, other various interunit linkages
were also observed in significant amounts. Strong signals for resinol (β-
β'/α-O-γ'/γ-O-α') substructures (B) were observed in the spectra, with
their Cα-Hα, Cβ-Hβ and the double Cγ-Hγ correlations at δC/δH 84.8/
4.65, 53.5/3.06 and 71.4/3.82 and 4.18 ppm, respectively. The
phenylcoumaran substructures (C) were detected from the spectra,
and the signals for their Cα-Hα, Cβ-Hβ, and Cγ-Hγ correlations were ob-
served at δC/δH 86.8/5.46, 53.3/3.46, and 62.5/3.73 ppm, respectively.
In bamboo lignin MWL, very small signals corresponding to p-
hydroxycinnamyl alcohol end groups (I) could be detected. However,
this group is really rare in plant lignin, which was the main reason for
the weak signals in the spectra. Furthermore, very small signals (Cα-
Hα correlations at δC/δH 79.2/5.59 ppm) corresponding to spirodienone
(β-1′ and α-O-α') substructures (D) could be observed when HSQC-
NMR spectra were Amplified (not shown in Fig. 2). However, these in-
terunit linkages are really rare in nature, which was the main reason
for the weak signals in the spectra.

The main cross-signals in the aromatic region of the HSQC spectra
corresponded to the aromatic rings of the different lignin units. Signals
from syringyl, guaiacyl, and p-hydroxyphenyl units were observed from
the HSQC spectra of bamboo D. sinicus lignin. The syringyl lignin units
showed a prominent signal for the correlation of C2, 6-H2, 6 at δC/δH
104.4/6.73 ppm, while the correlation of C2, 6-H2, 6 in oxidized syringyl
unit linked a carbonyl group at Cα (phenolic) were detected at δC/δH
106.2/7.23. The guaiacyl lignin units showed different correlations for
C2-H2 (δC/δH 110.7/6.98 ppm), C5-H5 (δC/δH 114.8/6.77 ppm), and C6-
H6 (δC/δH 119.4/6.75 ppm). Meanwhile, a significant amount of p-
hydroxyphenyl units was observed from C2, 6-H2, 6 correlations at δC/
δH 127.9/7.19 ppm. In addition, it was easy to identify correlations of es-
terified p-coumaric acid structures (pCA) due to its very prominent sig-
nals as shown by HSQC spectra. Aromatic ring cross-signals
corresponding to correlations C2, 6-H2, 6 and C3, 5-H3, 5 in pCA were ob-
served at δC/δH 130.1/7.49 and 115.7/6.94 ppm, respectively. Side
chain cross-signals corresponding to correlations Cα and Cβ in pCA
were revealed at 144.3/7.51 and 115.7/6.30 ppm, respectively.

Río first report that the tricin was incorporated into wheat straw lig-
nin in 2012 [31]. Their research implied that an unrevealed biosynthetic
pathway may be associated with cell wall lignification in gramineous



Fig. 5. Amplified anomeric regions of HSQC-NMR spectra of phenyl glycoside, γ-ester, and benzyl ether in bamboo lignin fractions (MWL, DSL) isolated from D. sinicus.
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plants. In recent years, Wen et al. [28] and Huang et al. [32–34] sequen-
tially reported that tricin might belong to trace substructures in milled
wood lignin of Moso bamboo culm. In our present research, the signals
corresponding to the tricin substructure (T)were detected in both spec-
tra ofMWL and DSL according to the C-H correlations at δC/δH 93.6/6.60,
98.2/6.22, and 103.2/7.34 [35]. However, according to our previousfind-
ings, the signals of tricin could not be detected in the bamboo lignin iso-
lated from D. sinicus with NaOH solution [36]. The results imply that it
was necessary to separate lignin from plant cell wall under mild and
neutral conditions to ensure a native structural characteristic when
the polymer's structure was evaluated.

3.4.2. LCC structures
It is generally believed that there are three types of LCC linkages in

the lignocellulosic biomass, phenyl glycoside (PhGlc), benzyl ether
(BE), and γ-ester. According to the NMR data from lignin-
carbohydrate model compounds, PhGlc linkages can be detected in
the signals area of δC/δH 104–99/4.8–5.2, and the signal of the LCC γ-
ester should be observed in the signals area of δC/δH 65–62/4.0–4.5. Ben-
zyl ether LCC structures can be subdivided into two types: (a) BE1 link-
ages between the α-position of lignin and the primary OH groups of
carbohydrates, which can be observed in the signals area of δC/δH
81–80/4.5–4.7 (at C-6 of Glc, Gal, and Man, and C-5 of Ara); and
(b) BE2 linkages between the α-position of lignin and secondary OH
groups of carbohydrates, mainly of lignin-xylan type (at C-2 or C-3 of
Xyl), giving a cross-peak at δC/δH 81–80/4.9–5.1.

In the present study, the cross signals at δC/δH 100.1/4.91 ppm was
labeled as PhGlc. The Cα-Hα correlations signals at δC/δH 81.0/4.62 in
the HSQC spectra of MWL and DSL implied that the BE LCC structures
were BE1 type in bamboo D. sinicus lignin. However, signals for γ-ester
bonds were overlaps with the correlations of γ-acylated β-O-4′ aryl
ether substructures (A′) at δC/δH 65–62/4.0–4.5 ppm. Therefore, further
research was needed to confirm the exact presence of the γ-ester LCC
linkages.

4. Conclusions

To characterize the structures of lignin and lignin-carbohydrate
complex, two lignin fractions (MWL, DSL) were isolated with dioxane
and DMSO under mild and neutral condition from the largest bamboo
species in the world, D. sinicus. The results showed that the two-step
treatments yielded 52.1% lignin based on the total lignin content in
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the dewaxed bamboo sample. The bamboo lignin consisted of three
basic units, p-hydroxyphenyl, guaiacyl, and syringyl units. Themajor in-
terunit linkages presented in the obtained bamboo lignin were β-O-4′
aryl ether linkages, together with lower amounts of β-β', β-5′, and β-
1′ linkages. Meanwhile, tricin was detected to be linked to lignin poly-
mer through β-O-4′ linkage in the bamboo. In addition, phenyl glyco-
side and benzyl ether LCC linkages were clearly detected in bamboo
(D. sinicus), whereas the γ-ester LCC linkages were ambiguous due to
the overlapping NMR signals with other substructures. The detailed
structural properties of the obtained lignin fraction together with the
light-weight, as comparedwith the heavyweight ofmetals and ceramic
systems [37–49], will benefit efficient utilization of natural polymers as
a possibly large-scale bio-based precursor for making polymeric mate-
rials, biochemicals, functional carbon and biofuels, and multifunctional
polymer nanocomposites as well to be potentially used for fuel cells,
electromagnetic interference (EMI) shielding, adsorbents for environ-
mental remediation, anticorrosion coating, sensors, etc. [50–78].
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